PROBLEMAS DE DIAMANTE 2.1.1


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE DIAMANTE 2.1.1"

Transcripción

1 PROBLEMAS DE DIAMANTE En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas de diamantes son una excelente manera de practicar sumas, restas, multiplicación y división de números enteros positivos y negativos, decimales y fracciones. Tienen el beneficio adicional de preparar a los estudiantes para la factorización de binomios en álgebra. a a + b suma b Ejemplo El número de arriba es el producto de 20 y 10, o 200. El número de abajo es la suma de 20 y 10, o = Ejemplo El producto del número de la derecha y 2 es 8. Entonces si usted divide 8 por 2 resulta, el número de la derecha. La suma de 2 y es 6, el número de abajo Ejemplo 6 Para obtener el número de la izquierda, reste de 6, 6 = 2. El producto de 2 y es 8, el número de arriba Ejemplo 8 2 La manera más fácil de encontrar los números a los lados en esta situación es buscar todos los pares de factores de 8. Son: 1 y 8, 2 y, y 2, y 8 y 1. Solamente uno de estos pares tiene una suma de 2: 2 y. Entonces los números a los lados son 2 y

2 Problemas Complete cada Problema de diamante x y a 8b 2b a 7a Respuestas 1. 2 y 2. y 6. 6 y 6. 6 y y y y y y y y y 1 1. xy y x + y 1. a y 2a 15. 6b y 8b a y 12a 2

3 OPERACIONES CON DECIMALES OPERACIONES ARITMÉTICAS CON DECIMALES SUMANDO Y RESTANDO DECIMALES: Escriba el problema en forma de columna con los puntos de una columna vertical. Escriba ceros para que todos los puntos decimales del número tengan los mismos dígitos. Sume o reste como con números enteros. Escriba el decimal en la respuesta alineada con los de arriba. MULTIPLICANDO DECIMALES: Multiplique como con números enteros. El producto tiene el número de lugares decimales igual al total de número de lugares decimales de los factores (los números que multiplicó). A veces se debe agregar ceros para poner el punto decimal. DIVIDENDO DECIMALES: Cuando se divide un decimal por un número entero, ponga el punto decimal en la respuesta directamente arriba del punto decimal en el número siendo dividido. Divida como con números enteros. A veces es necesario agregar ceros al número siendo dividido para completar la división. Cuando se dividen decimales o números enteros por un decimal, el divisor se debe multiplicar por un poder de diez para hacerlo en número entero. El dividendo se debe multiplicar por el mismo poder de diez. Después divida siguiendo las mismas reglas para las divisiones por números enteros. Para más información vea los recuadros de Apuntes de matemáticas de las Lecciones..2 y.. del texto Core Connections en español, Curso 2. Ejemplo 1 Suma 7.7, 28.9, 1.56 y Ejemplo 2 Reste de Ejemplo Multiplique 27.2 por (2 puntos decimales) 1.5 (2 puntos decimales) ( puntos decimales) Ejemplo Multiplique 0.7 por (2 puntos decimales) ( puntos decimales) (6 puntos decimales) Ejemplo 5 Divida 2. por ) Ejemplo 6 Divida 27.2 por 1.2. Primero multiplique cada número por 10 1 o

4 Problemas

5 Divida. Si es necesario, redondee las respuestas a la centésima Respuestas o o o , , ,

6 EQUIVALENTES DE FRACCIÓN-DECIMAL-PORCENTAJE y Fracciones, decimales y porcentajes son diferentes maneras de representar a la misma porción o número. fracción palabras o imágenes decimal Representaciones de una porción porcentaje Para más información vea el recuadro de Apuntes de matemáticas en la Lección del texto Core Connections en español, Curso 2. Para más ejemplos y práctica vea los materiales del Punto de comprobación 2 en Core Connections en español, Curso 2. Ejemplos De decimal a porcentaje: Multiplique el decimal por 100. (0.81)(100) = 81% De fracción a porcentaje: Escriba la proporción para encontrar la fracción equivalente usando 100 como el denominador. El numerador es el porcentaje. 5 = x 100 así que 5 = = 80% De decimal a fracción: Use los dígitos en decimal como el numerador. Use el valor del lugar como denominador. Simplifique cuando sea necesario. a. 0.2 = 2 10 = 1 5 b = De porcentaje a decimal: Divida el porcentaje por 100. % 100 = 0. De porcentaje a fracción: Use el 100 como denominador. Use el porcentaje como el numerador. Simplifique según sea necesario. 22% = = % = = 1 25 De fracción a decimal: Divida el numerador por el denominador. 8 = 8 = = 5 8 = = 11 = = 0.27 Para ver el proceso para convertir decimales periódicos a fracciones, ver problema 2-22 del texto Core Connections en español, Curso 2 o el recuadro de Apuntes de matemáticas en la Lección del texto Core Connections en español, Curso 2.

7 Problemas Convierta las fracciones, decimales o porcentajes como sea indicado. 1. Cambie 1 a un decimal. 2. Cambie 50% a una fracción a sus términos más bajos.. Cambie 0.75 a una fracción a sus términos más bajos.. Cambie 75% a un decimal. 5. Cambie 0.8 a un porcentaje. 6. Cambie Cambie 0. a una fracción. 8. Cambie 1 8 a un porcentaje. a un decimal. 9. Cambie 1 a un decimal. 10. Cambie 0.08 a un porcentaje. 11. Cambie 87% a un decimal. 12. Cambie 5 a un porcentaje. 1. Cambie 0. a una fracción a sus términos más bajos. 1. Cambie 65% a una fracción en sus términos más bajos. 15. Cambie Cambie 8 5 a un decimal. 16. Cambie 125% a una fracción en sus términos más bajos. a un decimal. 18. Cambie.25 a un porcentaje. 19. Cambie 16 1 a un decimal. Cambie el decimal a un porcentaje. 20. Cambie 1 7 a un decimal. 21. Cambie % a una fracción. Cambie la fracción a un decimal. 2. Cambie 8 7 a un decimal. Cambie el decimal a un porcentaje. 22. Cambie 0.75 a un porcentaje. Cambie el porcentaje a una fracción. 2. Cambie 0.12 a una fracción. 25. Cambie a una fracción.

8 Respuestas % 6. 20% % % o % ; 6.25% ; %; ; 87.5% =

9 OPERACIONES CON ENTEROS SUMA DE ENTEROS Los estudiantes repasan las sumas de enteros usando dos modelos concretos: el movimiento de un número a través de una recta númerica y azulejos de enteros negativos y positivos. Para sumar dos números enteros usando una recta númerica, empiece con el primer número y después mueva el número apropiado de espacios hacia la derecha o izquierda dependiendo si el segundo número es positivo o negativo. Su ubicación final es la suma de los dos números enteros. Para sumar dos números usando azulejos, un número positivo es representado por el número apropiado de azulejos positivos (+) y un número negativo está representado por el número apropiado de azulejos negativos ( ). Para sumar los dos enteros empieza con la representación de azulejos del primer entero en un diagrama y luego ponga la representación de azulejos del segundo número en el diagrama. Cualquier número igual de azulejos (+) y azulejos ( ) iguala a cero y pueden ser quitado del diagrama. Los azulejos que quedan representa la suma. Para más información vea el recuadro de Apuntes de matemáticas de la Lección 2.2. del texto Core Connections en español, Curso 2. Ejemplo Ejemplo ( ) = ( ) = 6 Ejemplo 5 + ( 6) Empiece con los azulejos representando el primer número Añada al diagrama los azulejos representando el segundo número Ejemplo = Circule los pares de azulejos de suma cero. 1 es la respuesta ( 6) = 1

10 SUMA DE ENTEROS EN GENERAL Cuando suma enteros usando el modelo de azulejos, los pares de azulejos de suma cero son formados solamente si los dos números tienen diferentes signos. Después que encierre en un círculo los pares de azulejos de suma cero, cuente los azulejos que no están circulados para encontrar la suma. Si los signos son iguales, no se forman pares de azulejos de suma cero y encuentra la suma de azulejos. Los enteros se pueden sumar sin hacer un modelo y siguiendo las siguientes reglas. Si los signos son iguales, suma los números y deje el mismo signo. Si los signos son diferentes, ignore los signos (es decir, use el valor absoluto de cada número). Reste el número más cerca al cero del número más lejos del cero. El signo de la respuesta es el mismo que el número que está más lejos del cero, es decir, el número con más valor absoluto. Ejemplo Para + 2, está más lejos del cero en la recta númerica que el 2, así que reste: 2 = 2. La respuesta es 2, ya que, es decir, el número más lejos del cero, es negativo en el problema original. Problemas Use cualquier modelo o las reglas anteriores para encontrar estas sumas ( 2) ( 1). 7 + ( 7) ( 8) ( 2) ( 16) ( 10) + ( ) ( 6) ( 65) ( ) ( ) + ( 2) + ( 8) ( ) + ( 2) ( ) ( 70) ( 7) + ( 8) + + ( ) ( 1) ( 8) ( 1) ( 16) ( 70) ( 1) + ( 5) + 20

11 Respuestas

12 OPERACIONES CON NÚMEROS ENTEROS 2.2. MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS ENTEROS Multiplique y divida dos números enteros a la misma vez. Si los signos son igual es producto será positivo. Si los signos son diferentes, el producto será negativo. Siga las mismas reglas para fracciones y decimales. Recuerde de aplicar el orden correcto de las operaciones cuando esté trabajando con más de una operación. Para más información vea el recuadro de Apuntes de matemáticas en la Lección.2. del texto Core Connections en español, Curso 2. Ejemplos a. 2 = 6 o 2 = 6 b. 2 ( ) = 6 o (+2) (+) = 6 c. 2 = 2 o 2 = 2 d. ( 2) ( ) = 2 o ( ) ( 2) = 2 e. ( 2) = 6 o ( 2) = 6 f. ( 2) = 2 o ( 2) = 2 g. 9 ( 7) = 6 o 7 9 = 6 h. 6 9 = 7 o 9 ( 6) = 1 7 Problemas Use las reglas de arriba para encontrar cada producto o cociente. 1. ( )(2) 2. ( )(). ( 12)(5). ( 21)(8) 5. ()( 9) 6. (1)( 8) 7. (5)( ) 8. (105)( 7) 9. ( 7)( 6) 10. ( 7)( 9) 11. ( 22)( 8) 12. ( 127)( ) 1. ( 8)( )(2) 1. ( )( )( ) 15. ( 5)( 2)(8)() 16. ( 5)( )( 6)( ) 17. ( 2)( 5)()(8) 18. ( 2)( 5)( )( 8) 19. ( 2)( 5)()( 8) 20. 2( 5)()( 8) ( 5) ( ) ( ) ( 6) ( ) ( 25) ( 12) ( 22). 5 ( 6) ( 2) ( 17) ( 5) ( 1)

13 Respuestas

14 OPERACIONES CON FRACCIONES y MULTIPLICACIÓN DE FRACCIONES La multiplicación de fracciones es revisada usando un área de modelo rectangular. Las líneas que dividen el rectángulo para representar una fracción se hacen verticalmente, y el número correcto de las partes se sombrea. Las líneas que dividen el rectángulo para representar la segunda fracción se hacen horizontalmente y parte del espacio sombreado se oscurece para representar el producto de las dos fracciones. Ejemplo (es decir, 1 2 de 5 8 ) Paso 1: Dibuje un rectángulo genérico y divídalo en 8 partes verticales. Ligeramente sombree 5 de esas partes y etiquetelas como 5 8. Paso 2: Use una línea horizontal y divida el rectángulo genérico. Sombree 1 2 de 5 8 y etiquetelo. Paso : Escriba una oración en números = 5 16 La regla para multiplicar fracciones derivada por el modelo arriba es para multiplicar los numeradores, luego multiplicar los denominadores. Simplifique el producto cuando sea posible. Para más información vea el recuadro de Apuntes de matemáticas en la Lección del texto Core Connections en español, Curso 2. Ejemplo 2 a b

15 Problemas Dibuje un modelo de área para cada una de las siguientes multiplicaciones y escriba la respuesta Use la regla para multiplicar fracciones para encontrar la respuesta para los siguientes problemas. Simplifique cuando sea posible Respuestas = = = = = = = = = = = 5 18

Primaria Cuarto Grado Matemáticas (con QuickTables)

Primaria Cuarto Grado Matemáticas (con QuickTables) Primaria Cuarto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares.

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. PARTES DE UN ENTERO 02 1 Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. En presentación de contenidos repasa las partes de una fracción y representa las figuras

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

Tema 2. Conceptos topográficos

Tema 2. Conceptos topográficos Tema 2. Conceptos topográficos Se puede definir la Topografía como el conjunto de métodos e instrumentos necesarios para representar gráfica o numéricamente el terreno con todos sus detalles, naturales

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros.

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros. Ejercicios de números enteros con solución 1 Luis debe 5 euros a Ana y 6 euros a Laura. Expresa con números enteros las cantidades que debe Luis. Como Luis debe a Ana 5 euros podemos escribir: 5 euros.

Más detalles

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante Organización de Computadoras 2014 Apunte 2: Sistemas de Numeración: Punto Flotante La coma o punto flotante surge de la necesidad de representar números reales y enteros con un rango de representación

Más detalles

Calendarización anual Programa de matemáticas 3º básico

Calendarización anual Programa de matemáticas 3º básico Calendarización anual Programa de matemáticas 3º básico Esta calendarización está pensada para un horario de 8 horas pedagógicas semanales. 1. Se basa en el trabajo de profesoras que han trabajado con

Más detalles

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24 1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

Texas Education Agency Proclamation 2005

Texas Education Agency Proclamation 2005 (a) Introducción. (1) Dentro de un plan de estudios de matemáticas balanceado, los principales puntos de enfoque en el 2º grado son el desarrollo de la comprensión del sistema de valor posicional de base

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Mó duló 02: Nu merós Reales

Mó duló 02: Nu merós Reales INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 0: Nu merós Reales Objetivo: Comprender los números reales como un conjunto que está conformado por otros conjuntos numéricos, los cuales tienen

Más detalles

Diviértete con novedosos juegos matemáticos

Diviértete con novedosos juegos matemáticos Resuelve los siguientes ejercicios ordena y coloca los signos operacionales que corresponden. = 000 = = =0 = 0 + + + + = 000 + - + = + = x - =0 - = 0 Cambie un solo número de lugar, para que los resultados

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

Primera versión del Algoritmo y Hardware de la Multiplicación.

Primera versión del Algoritmo y Hardware de la Multiplicación. 3.6 Multiplicación La multiplicación es una operación mas complicada que la suma y que la resta. Para entender como es que el hardware realiza esta operación, con base en la ALU desarrollada, daremos un

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

... 8. INTERES SIMPLE

... 8. INTERES SIMPLE 1 8. INTERES SIMPLE 8.1 Conceptos Básicos Interés El interés es el rédito o excedente generado, por una colocación de dinero, a una tasa de interés y un determinado periodo de tiempo y este puede ser simple

Más detalles

Lleve a casa lo juegos de matematicas a casa

Lleve a casa lo juegos de matematicas a casa Los juegos abajo solamente necesitan cartas, y los juegos son buenos para practicar practicar equipos de matematicas. Si tiene preguntas, puede mandar un email a [email protected] JUEGO DE CARTAS

Más detalles

Operaciones con Fracciones Aritméticas

Operaciones con Fracciones Aritméticas Aritméticas Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido : Contenido Discutiremos: el mínimo común múltiplo de dos o más números enteros : Contenido Discutiremos: el mínimo común múltiplo

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid PRUEBA POR EQUIPOS 1º y 2º de E.S.O. (45 minutos) 1. Antonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de Antonio y le añade un 1 a la derecha y obtiene un número de seis

Más detalles

Fuentes en FamilySearch

Fuentes en FamilySearch Fuentes en FamilySearch Brandon L. Baird, AG FamilySearch [email protected] QUÉ ES UNA FUENTE? Es un registro histórico, una fotografía, un diario personal, un documento, o cualquier otro

Más detalles

PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino

PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino Los problemas fueron extraídos de B. Zolkower: Handbook of Mathematical-Didactical Activities. 2004 (con autorización de la autora). 1. Cuál es mayor? Consideremos

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

Microsoft Paint. Botón de Selección Libre Utilizado para seleccionar áreas en la imagen que tenga cualquier forma.

Microsoft Paint. Botón de Selección Libre Utilizado para seleccionar áreas en la imagen que tenga cualquier forma. Microsoft Paint Información General Área de Dibujo Líneas Colores Borrar Microsoft Paint es un programa simple para la edición de gráficos y este programa esta incluido en Microsoft Windows. Muchas de

Más detalles

PAINT. GUIA DE PAINT Pág. 1. 1. Cómo abrir Paint? 2. Herramientas

PAINT. GUIA DE PAINT Pág. 1. 1. Cómo abrir Paint? 2. Herramientas Pág. 1 PAINT 1. Cómo abrir Paint? 2. Herramientas 3. Colores * Área de trabajo * Herramientas de selección y ampliación-reducción * Herramientas para líneas * Herramientas para figuras * Herramientas de

Más detalles

Preparación de la carga para su movilización.

Preparación de la carga para su movilización. Preparación de la carga para su movilización. Cálculo de los esquemas de paletización. Por: Herikson García Peña. Bibliografìa: Le système graphique Palett O Graf Fenwick Presentación La carga de productos

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

4º Grado. Cálculo de Fracciones. Suma de Fracciones con Común Denominador. Slide 2 / 73. Slide 1 / 73. Slide 4 / 73. Slide 3 / 73.

4º Grado. Cálculo de Fracciones. Suma de Fracciones con Común Denominador. Slide 2 / 73. Slide 1 / 73. Slide 4 / 73. Slide 3 / 73. Slide / New Jersey Centro para Enseñanza y Aprendizaje Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

Lección 49. Funciones I. Definición

Lección 49. Funciones I. Definición Lección 49 Funciones I Definición Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x A exactamante un elemento y B. El elemento y B, se denota por f (x), y decimos

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia BACHILLERATO CO+ 0.- Pedro anduvo una determinada distancia a velocidad constante. Si hubiera ido 0,5 km/h más rápido, habría recorrido la misma distancia en 5 4 del tiempo original, pero si hubiera ido

Más detalles

Operaciones Aritméticas en Números con Signo

Operaciones Aritméticas en Números con Signo Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:

Más detalles

UNIDAD 1 PLAN DE APOYO

UNIDAD 1 PLAN DE APOYO UNIDAD 1 PLAN DE APOYO NÚMEROS ENTEROS 7 Básico Autor Thomas Bustos Ortiz I INDICE TAREAS CODICIONES FICHAS Ordenan y comparan números naturales Suman y restan de números naturales Conocen números enteros

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES IX INTEGRACIÓN POR FRACCIONES PARCIALES La integración por fracciones parciales es más un truco o recurso algebraico que algo nuevo que vaya a introducirse en el curso de Cálculo Integral. Es decir, en

Más detalles

Puede que se quede sin gasolina Se quedará sin gasolina No debió seguir Se ha

Puede que se quede sin gasolina Se quedará sin gasolina No debió seguir Se ha 1. Si al llegar a la esquina Jim dobla a la derecha o a la izquierda puede quedarse sin gasolina antes de encontrar una estación de servicio. Ha dejado una atrás, pero sabe que, si vuelve, se le acabará

Más detalles

TUTORIAL PAINT. PARTE II

TUTORIAL PAINT. PARTE II TUTORIAL PAINT. PARTE II AGREGAR TEXTO Y FORMAS A UNA IMAGEN Autor: Eduardo Escárate Ferrada Contenido 1 Abrimos una imagen o una captura de pantalla en paint.... 1 1.1 Se selecciona la imagen y luego

Más detalles

A l g o r i t m o s. Seguridad en Internet ALGORITMOS. www.upibi.net

A l g o r i t m o s. Seguridad en Internet ALGORITMOS. www.upibi.net ALGORITMOS Objetivos Introducir el concepto de algoritmo y sus características. Mostrar las diferentes técnicas para representar algoritmos. Introducir la programación estructurada y el diseño descendiente.

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

ÉQUIPOS DE PRÁCTICAS DE LABORATORIO

ÉQUIPOS DE PRÁCTICAS DE LABORATORIO Universidad de Oviedo UNIVERSIDAD DE OVIEDO ÁREA DE TECNOLOGÍA ELECTRÓNICA ÉQUIPOS DE PRÁCTICAS DE LABORATORIO Osciloscopio digital YOKOGAWA DL1520 Generador de funciones PROMAX GF-232 Multímetro digital

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Sistemas Numéricos y Códigos Binarios

Sistemas Numéricos y Códigos Binarios Sistemas Numéricos y Códigos Binarios Marcelo Guarini Departamento de Ingeniería Eléctrica, 5 de Abril, 5 Sistemas Numéricos en Cualquier Base En el sistema decimal, cualquier número puede representarse

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

Para el estudiante. 0-1 Fórmulas geométricas...z3. 0-7 Números primos y números compuestos...z17. 0-8 Cómo factorizar...z19

Para el estudiante. 0-1 Fórmulas geométricas...z3. 0-7 Números primos y números compuestos...z17. 0-8 Cómo factorizar...z19 Para el estudiante El Capítulo 0 contiene lecciones breves para repasar las destrezas matemáticas de los cursos anteriores. Es importante conocer estos contenidos para tener éxito en Álgebra 1. Para mantener

Más detalles

Lección 2. Objetivo: Interpretar una fracción como división. Lección 2 5 4. Problema de aplicación (8 minutos) Estructura de lección sugerida

Lección 2. Objetivo: Interpretar una fracción como división. Lección 2 5 4. Problema de aplicación (8 minutos) Estructura de lección sugerida Lección 2 Objetivo: Interpretar una fracción como división. Estructura de lección sugerida Problema de aplicación Práctica de agilidad Desarrollo del concepto Resumen de alumnos Tiempo total (8 minutos)

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x.

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x. 2 FUNCINES EJERCICIS PRPUESTS 2. Representa las siguientes funciones. a) y 6 x b) y 0 x Tienen algún punto en común? Cuál crece más rápidamente? y = 0 x El (0, ) es el único punto que tienen en común.

Más detalles

Unidad 1. Los números naturales y las operaciones. Números de más de seis cifras: los millones.

Unidad 1. Los números naturales y las operaciones. Números de más de seis cifras: los millones. Unidad 1 Los números naturales y las operaciones Diferencia entre cifra y número. Valor de posición de las cifras. Adición de números naturales. Sustracción de números naturales. Prueba de la sustracción.

Más detalles

SOLUCIÓN DE PROBLEMAS DE NÚMEROS REALES

SOLUCIÓN DE PROBLEMAS DE NÚMEROS REALES SOLUCIÓN DE PROBLEMAS DE NÚMEROS REALES Al finalizar el capítulo el alumno manejará operaciones con números reales para la solución de problemas Reforma académica 2003 9 SECRETARÍA DE EDUCACIÓN PÚBLICA

Más detalles

GUÍAS 2 y 3: FRACCIONES EN QUE EL NUMERADOR ES MENOR QUE EL DENOMINADOR

GUÍAS 2 y 3: FRACCIONES EN QUE EL NUMERADOR ES MENOR QUE EL DENOMINADOR unidad ásico MTERIL E TRJO PR EL UL GUÍ : EL NUMEROR Y EL ENOMINOR E UN FRIÓN En esta guía se espera que los estudiantes comprendan el significado del los conceptos de numerador y denominador. Se sugiere

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

TALLER DE MATEMATICAS 4º

TALLER DE MATEMATICAS 4º FORMACIÓN ACADÉMICA TALLER DE MATEMATICAS º PFA-0-R0 Versión 0 PERIODO 0 NOMBRE: CURSO:0 CAPACIDADES Solución de problemas Razonamiento Representación gráfica EJE: NUMERICO VARIACIONAL TEMA DESTREZAS Comprender

Más detalles

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la FIGURAS SEMEJANTES Son figuras son semejantes si tienen la misma forma, pero distinto tamaño. Una figura es semejante a otra si has multiplicado a todos y cada uno de los lados de la primera por el mismo

Más detalles

COTIZADOR WEB EQUINOCCIAL

COTIZADOR WEB EQUINOCCIAL COTIZADOR WEB EQUINOCCIAL Inicio de Sesión En esta pantalla el usuario deberá ingresar su usuario y password; estos deben ser los que fueron asignados por el administrador de sistemas El botón aceptar

Más detalles

Sistema de numeración maya

Sistema de numeración maya @ Sistema de numeración maya La civilización maya tuvo un gran desarrollo cultural y matemático, ya que creó un sistema de numeración vigesimal, es decir, que su base es el número 20 y las cantidades se

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES

REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES Cuadro resumen de las INDETERMINACIONES. Tipo I. k f () a Método: calcular los límites laterales. Ejemplo: 6 0 0 Tipo II. f () a Caso. f() es un

Más detalles

INSTRUCTIVO PARA DILIGENCIAR LA MATRIZ DE NECESIDADES DE DOCENTES POR ESTABLECIMIENTO EDUCATIVO PASO A PASO PARA EL DILIGENCIAMIENTO DE INFORMACIÓN

INSTRUCTIVO PARA DILIGENCIAR LA MATRIZ DE NECESIDADES DE DOCENTES POR ESTABLECIMIENTO EDUCATIVO PASO A PASO PARA EL DILIGENCIAMIENTO DE INFORMACIÓN INSTRUCTIVO PARA DILIGENCIAR LA MATRIZ DE NECESIDADES DE DOCENTES POR ESTABLECIMIENTO EDUCATIVO Señor directivo docente, la Matriz de Necesidades de Docentes por Perfil es una herramienta diseñada por

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

[email protected]

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

FUNDAMENTOS DE MATEMÁTICA FINANCIERA

FUNDAMENTOS DE MATEMÁTICA FINANCIERA UNDAMENTOS DE MATEMÁTICA INANCIERA Curso Preparación y Evaluación Social de Proyectos Sistema Nacional de Inversiones División de Evaluación Social de Inversiones MINISTERIO DE DESARROLLO SOCIAL Curso

Más detalles

Escribe. Nombre. A destrozar! A desbaratar! Caligrafía Letra Uu 49. Actividad para la casa: Pida a su niño o niña que le

Escribe. Nombre. A destrozar! A desbaratar! Caligrafía Letra Uu 49. Actividad para la casa: Pida a su niño o niña que le Escribe U u U u Instrucciones: Escribe una hilera con cada letra. K.17.A.1 Formar letras mayúsculas legibles, usando las normas básicas del texto impreso (progresando de izquierda a derecha y de arriba

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes. Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al

Más detalles

5º DE EDUCACIÓN PRIMARIA

5º DE EDUCACIÓN PRIMARIA FICHAS de MATEMÁTICAS 5º DE EDUCACIÓN PRIMARIA Material elaborado por: JOSÉ SASTRE Y LAHOZ Cedido para su publicación en Soy aestra.com 1 ÍNDICE Índice 1 Sistema de numeración decimal y gráficos 2 Líneas

Más detalles

UNIDADES DE CONCENTRACIÓN

UNIDADES DE CONCENTRACIÓN Colegio San Esteban Diácono Departamento de Ciencias Química IIº Medio Prof. Juan Pastrián / Sofía Ponce de León UNIDADES DE CONCENTRACIÓN 1. Porcentaje masa/masa (%m/m) Cantidad en masa (g) de un componente

Más detalles

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión

Más detalles

ORGANIZACIÓN DE DATOS

ORGANIZACIÓN DE DATOS CAPÍTULO 13 ORGANIZACIÓN DE DATOS Siendo el dato el material que se debe procesar, es decir, la materia prima de la estadística, el primer paso es entonces la recolección de datos, para lo cual se emplean

Más detalles

Gráficos de Funciones Matemáticas y Trigonométricas con Excel 2007

Gráficos de Funciones Matemáticas y Trigonométricas con Excel 2007 Gráficos de Funciones Matemáticas y Trigonométricas con Excel 2007 A continuación se grafican las funciones trigonométricas y algunas funciones matemáticas. Este artículo no cubre en detalle la teoría,

Más detalles

Instrucciones básicas para la carga de planes de evaluación en Eduweb

Instrucciones básicas para la carga de planes de evaluación en Eduweb Instrucciones básicas para la carga de planes de evaluación en Eduweb Entre en Eduweb con su clave y contraseña. Entre en el menú de sus asignaturas. En la pantalla se cargará un cuadro con las asignaturas

Más detalles

PETICIÓN PARA APLAZAMIENTO Instrucciones Generales

PETICIÓN PARA APLAZAMIENTO Instrucciones Generales PETICIÓN PARA APLAZAMIENTO Instrucciones Generales POR FAVOR LEA PRIMERO: Es muy importante que Ud. sepa que el hecho de firmar un documento jurídico puede ayudar o perjudicar su caso. Antes de firmar

Más detalles

Lección 18: Plano car tesiano. Mapas y planos

Lección 18: Plano car tesiano. Mapas y planos GUÍA DE MATEMÁTICAS II 9 Lección 8: Plano car tesiano. Mapas y planos Mapas y planos La siguiente figura es un plano de una porción del Centro Histórico de la Ciudad de México. En él se ha utilizado la

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Anualidades y gradientes UNIDAD 3: ANUALIDADES Y GRADIENTES OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD II EXCEL

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD II EXCEL UNIDAD II EXCEL COMPETENCIAS E INDICADORES DE DESEMPEÑO Identificar las funciones de microsoft excel utiliza la tabla de cálculo para elaborar documentos. Interactúa con las diferentes herramientas de

Más detalles

0.- Contenido e Índice

0.- Contenido e Índice MANUAL DE USO PLANILLA CAJA CHICA 0.- Contenido e Índice I.- Introducción p. 2 II.- Descripción de la Planilla p. 2 III.- Manejo de Caja Chica Durante el Año p. 2 IV.- Resumen Anual p. 5 Como una forma

Más detalles

7 Suscribirse a las nuevas notificaciones de convocatorias

7 Suscribirse a las nuevas notificaciones de convocatorias 7 Suscribirse a las nuevas notificaciones de convocatorias Puede suscribirse para recibir notificaciones por correo electrónico de las nuevas convocatorias que se publiquen en su ámbito de interés con

Más detalles

Tutorial de Ayuda para postulación on line al Concurso Innovación en Energías Renovables

Tutorial de Ayuda para postulación on line al Concurso Innovación en Energías Renovables Tutorial de Ayuda para postulación on line al Concurso Innovación en Energías Renovables 1. Ingresar a la página de CORFO (emplear navegador Explorer) www.corfo.cl seleccionar programas y concursos, ingresar

Más detalles

GUIA RÁPIDA PARA LA PRESENTACIÓN DE TESIS Y TRABAJOS DE GRADO EN FORMATO DIGITAL

GUIA RÁPIDA PARA LA PRESENTACIÓN DE TESIS Y TRABAJOS DE GRADO EN FORMATO DIGITAL VICERRECTORÍA GENERAL DIRECCIÓN NACIONAL DE BIBLIOTECAS GUIA RÁPIDA PARA LA PRESENTACIÓN DE TESIS Y TRABAJOS DE GRADO EN FORMATO DIGITAL GUIA RÁPIDA PARA LA PRESENTACIÓN DE TESIS Y TRABAJOS DE GRADO EN

Más detalles

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES.

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. D E C I M A L E S MARÍA LUCÍA BRIONES PODADERA PROFESORA DE MATEMÁTICAS UNIVERSIDAD DE CHILE. 38 Si tenemos el número 4,762135 la ubicación de cada

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

DIRECCION DE EDUCACIÓN PARTICULAR

DIRECCION DE EDUCACIÓN PARTICULAR DIRECCION DE EDUCACIÓN PARTICULAR LAS PARTES DE LA APLICACIÓN PAINT Para iniciar el Paint Brush se siguen los siguientes pasos: 1. Ir al botón de Inicio, hacer click con el botón primario 2. Ir a programas,

Más detalles

Tema 3: Sistemas Combinacionales

Tema 3: Sistemas Combinacionales Ejercicios T3: Sistemas Combinacionales Fundamentos de Tecnología de Computadores Tema 3: Sistemas Combinacionales 1. Analizar el siguiente circuito indicando la expresión algebraica que implementa, la

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. [email protected]

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García [email protected] 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

Guía de Instalación. etiqueta de envío. su información de activación

Guía de Instalación. etiqueta de envío. su información de activación Guía de Instalación Por favor, no intente instalar después de las 8 de la tarde en día de su activación. Su fecha de activación, número de cuenta y orden se encuentran impresosen la etiqueta de envío adjunta

Más detalles

EJERCICIOS DE PRÁCTICA

EJERCICIOS DE PRÁCTICA EJERIIOS E PRÁTI Matemáticas Nombre del estudiante: d a r o G PP 0 Todos los derechos de reproducción y divulgación están reservados por el epartamento de Educación de Puerto Rico, 0. HOJ E MTEMÁTIS E

Más detalles

COLEGIO SAN TARSICIO. Manual Phidias. Módulo de Tesorería

COLEGIO SAN TARSICIO. Manual Phidias. Módulo de Tesorería COLEGIO SAN TARSICIO Manual Phidias Módulo de Tesorería En este módulo de la plataforma virtual Phidias se puede revisar el Consolidado de tesorería incluyendo cobros pendientes, cobros pagados, Medios

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS 4 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles