IESLILA Curso 11/12 3ºX SOMOS POLVO DE ESTRELLAS


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IESLILA Curso 11/12 3ºX SOMOS POLVO DE ESTRELLAS"

Transcripción

1 PROPIEDADES GENERALES: LA LONGITUD. Las primeras unidades de longitud que usó el hombre estaban en relación con su cuerpo, como el paso, el palmo, la braza, la pulgada, el pie, etc. El inconveniente de estas unidades de medida es que varían según la persona, e incluso en la misma persona debido al crecimiento. Por esta razón, se establecieron patrones de medida. Al principio estas unidades no eran universales, cada país tenía sus propias unidades e incluso dentro de un mismo país las unidades de medida eran diferentes según las regiones. En 1792 se logró un acuerdo internacional y se adoptó el sistema decimal de medida. Este sistema tiene como unidad inalterable el metro que corresponde a la diezmillonésima parte del cuadrante del meridiano terrestre. Del metro surgieron divisores y múltiplos que dan origen a las unidades que tú utilizas a diario. 1. Especifica en cada caso cuál de estas unidades de medida: mano, pie, palmo, brazo, pulgada, codo, utilizarías para medir los siguientes objetos: lápiz, mesa, ancho de la pizarra, una goma de borrar, afilador, ancho y largo de la clase. 2. Utiliza una cinta métrica o regla para conocer cuánto miden, en las unidades del SI, uno de tus pasos, la mano, pulgada,. y anota las medidas sobre los siguientes dibujos: 3. Utiliza las medidas que has calculado en la pregunta anterior para medir el ancho y largo de tu mesa, de tu libreta, bolígrafo, ancho y largo de la clase. Haz un cuadro con tus medidas corporales, el equivalente en las unidades del SI y las medidas reales. 4. Qué medidas corporales utilizarías para hallar la altura de la puerta y la de la mesa? Anótalas y utilízalas para calcular esas medidas. 5. Escribe el nombre de todos los instrumentos que conozcas que sirvan para medir longitudes. LA SUPERFICIE. Las superficies regulares se miden por cálculo, aplicando fórmulas matemáticas en las que intervienen dimensiones lineales ( recuerdas las fórmulas para calcular la superficie de un cuadrado, rectángulo, triángulo, círculo?). 1

2 Para medir pequeñas superficies irregulares se puede dibujar su silueta sobre papel milimetrado y contar los cuadraditos enteros que contiene; también se cuentan los que tienen más de la mitad de la silueta. Al final se suman ambos. También podemos utilizar distintas aplicaciones informáticas como Google Earth, PDF- Viewer 7. Calcula la superficie de los siguientes objetos de la clase: 8. Mide la superficie de cada uno de las superficies que tienes a continuación. Imagina que cada cuadradito representa 1 cm Con ayuda de una hoja de papel cuadriculado mide la superficie de tu mano. EL VOLUMEN. Para conocer el volumen de un sólido de forma geométrica regular se aplica una fórmula matemática en la que intervienen sus dimensiones lineales. Para medir el volumen de los líquidos se emplean probetas, recipientes de vidrio o plástico con una graduación. Al verter en ellas el líquido, el nivel que alcanza indica el volumen de líquido que contiene. Al leer el nivel del líquido hay que tener en cuenta que éste presenta una curvatura llamada menisco. La mayoría de los líquidos tienen un menisco cóncavo. Otros, como el mercurio, tienen un menisco convexo. 2

3 A veces se necesita medir una determinada cantidad de líquido con una mayor exactitud que la que se puede conseguir con una probeta. Para eso se emplean instrumentos especiales, siempre de vidrio, conocidos como buretas. Una bureta es un tubo largo de vidrio, graduado, y que termina en un grifo. Llenado de líquido, se abre el grifo y se vierte en otro recipiente. Se cierra el grifo y en la bureta se puede ver el volumen de líquido vertido. Para medir el volumen de sólidos irregulares también se utilizan probetas. Se llena la probeta hasta un nivel determinado, después se pone en su interior el sólido, con lo que subirá el volumen que marca. La diferencia entre los volúmenes marcados después y antes de introducir el sólido será el volumen de éste. 10. Busca información sobre la fórmula para calcular el volumen de estos cuerpos geométricos y haz el ejemplo. Figura Fórmula Ejemplo con datos dados a = 6 cm b = 8 cm c = 4 cm r = 3 cm h = 7 cm l = 3 cm r = 3 cm 3

4 11. a) Calcula el volumen de las figuras geométricas que te da la profesora. Sobre la figura de cada una anota las medidas que necesitas para hacerlo. Utiliza la unidad de medida que consideres más apropiada. b) Expresa en m 3 y en mm 3 el volumen de las figuras anteriores. 12. Calcula el volumen del envase de medicamentos que te ha proporcionado la profesora. Haz un esquema del mismo y, sobre él, anota las medidas que necesites. Expresa el volumen en cc y en m Halla el volumen de los líquidos que contiene cada uno de los recipientes marcados con las letras A, B, C, D, E y F. Anota los resultados en tu libreta. 14. Halla el volumen de los sólidos que tienes sobre tu mesa de trabajo. Anota los resultados en tu libreta. 15. Idea un procedimiento para hallar el volumen de un sólido irregular que es soluble en agua. LA CAPACIDAD. La capacidad y el volumen son términos que se encuentran estrechamente relacionados. Se define la capacidad como el espacio vacío de alguna cosa que es suficiente para contener a otra u otras cosas. Se define el volumen como el espacio que ocupa un cuerpo. Entre ambos términos existe una equivalencia que se basa en la relación entre el litro (unidad de capacidad) y el decímetro cúbico (unidad de volumen): el litro es el volumen de líquido que cabe en un cubo de 1 decímetro de lado; por tanto es igual a 1 dm Una bola de cristal, tiene capacidad?... y una botella de cristal?... y un rotulador?... una tiza?... un vaso?... una pipeta?... un matraz? Halla y anota la capacidad de los siguientes recipientes: a) Cuántos vasos necesitarías llenar para conseguir un litro? b) A cuántos cc equivalen los ml de cada cuchara? Y los del vaso? 18. Imagínate que tenemos recipientes con la forma y tamaño de las figuras que aparecen en el ejercicio 11. Qué capacidad en ml tendría cada una de ellas? 4

5 19. Normalmente los tetrabrik grandes de leche, zumo contienen 1 litro. Al menos eso es lo que se asegura en la etiqueta. Para averiguar si esa información es cierta, calcula la capacidad del envase que se te ha entregado y saca tus conclusiones. 20. Cuál es el volumen aproximado de la lata de refresco? Coincide con el contenido que aparece en la etiqueta? LA MASA Nos indica la cantidad de materia. Los instrumentos de medida más comunes son la balanza y la bascula. 21. Asocia cada imagen con la frase que le corresponde: a) UN KILO c) MEDIO KILO b) UN CUARTO KILO c) MEDIO KILO 22. Cuántos gramos de café tiene el paquete? cuántos paquetes de café necesitamos para tener un kilo? 23. Cuántos gramos de arroz tiene el paquete? cuántos paquetes de arroz necesitamos para tener un kilo de arroz? 24. Cuántos paquetes de café pesarán lo mismo que un paquete de arroz? 25. Esta lata contiene un octavo kilo cuántos gramos?... cuántas latas necesitarías para tener un kilo?... y medio kilo?... y un cuarto kilo? A continuación tienes el prospecto de un medicamento. Léelo atentamente y responde a las siguientes cuestiones: 40 comprimidos 5

6 a) Cuántos gramos contiene el envase? b) Cuántos miligramos de bicarbonato de sodio nos habremos tomado si a lo largo de un día ingerimos 10 comprimidos? c) El médico receto a Miguel 2 comprimidos cada 8 horas durante una semana. Miguel cree que con una caja tendrá suficiente. Tiene razón? Justifica tu respuesta. 27. Aquí tienes el prospecto de otro medicamento. Léelo con atención y responde a las cuestiones planteadas. a) Busca el significado de las palabras que no conozcas. b) Roberto se ha aplicado una dosis cada tres horas a lo largo de un dia. que cantidad de benzocaina ha ingerido? Expresa el resultado en gramos y miligramos. c) Cuántos ml de producto son necesarios para obtener 74 mg de benzocaina? d) Y para obtener 36 mg de tirotricina? e) Cuántos mg de dezametazona hay en 3,25 ml del medicamento? f) Cuántos mg de benzocaina hay en 6,8 ml de medicamento? LO TIENES CLARO? 28. Realiza los siguientes cambios de unidades: 245,3 kg =.g 356,78g = mg 12345g = kg 1mg=.g 245,3 m 3 =...cc 95 cc =...mm 3 12 cc =...ml 456 mm 3 =...cc 12 m 2 =...cm 2 0,54 km 2 =...m 2 378,56 cm 2 =...m 2 1cm 2 =...m 2 3l =...ml 78,5 dl =...l 25,47 cl =...ml 1l =...ml 2l =...dm 3 45 km =...m 12,56 m =...cm 700 cm =...m 45,9 mm =...cm 346 dm =...m 12,45 mg =...g 76 cm 2 =...mm cm =...m 345cc =...l 76l =...dm m 2 =...cm m =...km 3m =...cm 6

Actividades de consolidación

Actividades de consolidación Actividades de consolidación 1 Define los siguientes conceptos: Las definiciones de los distintos conceptos son: a) Magnitud: todo aquello que se puede medir. b) Propiedad intensiva: propiedad de la materia

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

UNIDAD 2: PROPIEDADES DE LA MATERIA

UNIDAD 2: PROPIEDADES DE LA MATERIA UNIDAD 2: PROPIEDADES DE LA MATERIA Qué es la materia? A través de los sentidos (vista, oído, tacto, gusto y olfato) recibimos información sobre todo lo que nos rodea. Percibimos objetos de diversas clases,

Más detalles

LA CIENCIA, LA MATERIA Y SU MEDIDA ACTIVIDADES DE REFUERZO ACTIVIDADES FICHA 1. 1. Expresa en kilogramos la masa de una manzana de 195 g.

LA CIENCIA, LA MATERIA Y SU MEDIDA ACTIVIDADES DE REFUERZO ACTIVIDADES FICHA 1. 1. Expresa en kilogramos la masa de una manzana de 195 g. FICHA 1 DE REFUERZO 1. Expresa en kilogramos la masa de una manzana de 195 g. 2. Expresa en gramos la masa de tres cuartos de kilogramo de arroz. 3. Expresa en miligramos la masa de un tornillo de 2 g.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. PÁGINA EJERCICIOS Unidades de volumen Transforma en metros cúbicos: a) 50 dam b) 0,08 hm c) 0, km d) 5 80 dm e) 500 hl f) 0 000 l a) 50 dam = 50 000 m b) 0,08 hm = 8 000 m c) 0, km = 0 000 000 m d)

Más detalles

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos.

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos. TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Un poliedro se llama regular cunado cumple las dos condiciones siguientes: Sus caras son polígonos regulares idénticos. En cada vértice

Más detalles

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1?

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1? MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES Actividad 1 Prismas rectos En años anteriores hemos aprendido a calcular perímetros y áreas de figuras geométricas. Ahora veremos cómo se puede calcular

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 215

10Soluciones a los ejercicios y problemas PÁGINA 215 0Soluciones a los ejercicios y problemas PÁGINA 5 Pág. U nidades de volumen Transforma en metros cúbicos las siguientes cantidades de volumen: a) 0,05 hm b)59 hm c) 5 dm d)0,05 km e) dam f) 58 000 l a)

Más detalles

OPERANDO UNIDADES DE MEDIDA. Operaciones: Respuesta: Operaciones:

OPERANDO UNIDADES DE MEDIDA. Operaciones: Respuesta: Operaciones: UNIDAD 2: UNIDADES DE MEDIDA 1. Si sabes que una hora equivale a 60 minutos y un minuto equivale a 60 segundos, calcula cuantos segundos tiene una hora. Hay cosas que se pueden expresar con números si

Más detalles

FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES. Belkis saumeth lopez cod: 2010217066. Faviel Miranda Lobo cod: 2011111006

FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES. Belkis saumeth lopez cod: 2010217066. Faviel Miranda Lobo cod: 2011111006 FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES Belkis saumeth lopez cod: 2010217066 Faviel Miranda Lobo cod: 2011111006 Roberto Carlos Correa 2010213015 Victor andres castrillon martinez

Más detalles

06-A-1/10 Sistema Métrico Decimal Magnitudes y medidas

06-A-1/10 Sistema Métrico Decimal Magnitudes y medidas 06-A-1/10 Medir es comparar dos cantidades viendo cuántas veces contiene una a otra. Al comparar los dos pies, hemos hecho una medida. Así el pie del gigante es... veces mayor que el de Paco. Magnitud

Más detalles

GUÍA DE TRABAJO: MASA Y VOLUMEN

GUÍA DE TRABAJO: MASA Y VOLUMEN GUÍA DE TRABAJO: MASA Y VOLUMEN 1 1_ Qué harías para determinar la masa de agua que absorbe un trozo de papel secante? Con una balanza se mide la masa del trozo de papel secante. Se humedece el papel secante

Más detalles

UNIDAD 9. UNIDADES DE MEDIDA. CAPACIDAD Y MASA

UNIDAD 9. UNIDADES DE MEDIDA. CAPACIDAD Y MASA UNIDAD 9. UNIDADES DE MEDIDA. CAPACIDAD Y MASA ÍNDICE 9.1 Unidades de capacidad y masa. Múltiplos y submúltiplos del litro y del gramo. 9.2 Cambio de unidades de medida de capacidad y masa. 9.3 Concepto

Más detalles

La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa.

La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa. Todo es materia Cuando estudiamos el Universo describimos una serie de elementos que forman parte de él, como los cuerpos grandes y pequeños, las sustancias que lo componen, etcétera. Qué es? Todos ellos

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS.

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS. PRISMAS 1.) Las dimensiones de un ortoedro son a = 7 cm, b = 5 cm y c = 10 cm. Dibuja esquemáticamente su desarrollo y calcula su área, su volumen y la longitud de la diagonal. Sol: 310 cm 2 ; 350 cm 3

Más detalles

TETRAEDRO CUBO OCTAEDRO DODECAEDRO ICOSAEDRO

TETRAEDRO CUBO OCTAEDRO DODECAEDRO ICOSAEDRO 6.- SÓLIDOS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben describir cuerpos geométricos usando el vocabulario apropiado con términos como vértices, caras, aristas, planos, diedros,

Más detalles

Matemáticas Grado 6 Resolver problemas de perímetro, área y volumen

Matemáticas Grado 6 Resolver problemas de perímetro, área y volumen Matemáticas Grado 6 Resolver problemas de perímetro, área y volumen Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a encontrar los perímetros, áreas y volúmenes de figuras. Ésta es

Más detalles

EL VOLUMEN Y LA CAPACIDAD

EL VOLUMEN Y LA CAPACIDAD EL VOLUMEN Y LA CAPACIDAD 1. Hallar el volumen de un cubo de 3dm. de lado. 9. Cuál es el volumen de la figura formada por cubos? 2. Hallar el volumen de un cubo de 4cm. de lado. 3. Calcular el volumen

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =

Más detalles

Lección 14: Volúmenes de algunos cuer pos

Lección 14: Volúmenes de algunos cuer pos LECCIÓN 14 Lección 14: Volúmenes de algunos cuer pos Concepto de volumen En un cuerpo sólido podemos medir su volumen, lo que, como en el caso de las longitudes y las áreas significa ver cuántas veces

Más detalles

GEOMETRÍA ESPACIAL Programación

GEOMETRÍA ESPACIAL Programación GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les

Más detalles

UNIDAD 6. Solución: La temperatura. Cuáles de estas cualidades de los objetos son magnitudes? a) Color b) Peso c) Longitud d) Sabor

UNIDAD 6. Solución: La temperatura. Cuáles de estas cualidades de los objetos son magnitudes? a) Color b) Peso c) Longitud d) Sabor UNIDAD 6 Diferencia, entre las cualidades de los objetos, las que son magnitudes. a) Color b) Peso c) Longitud d) Sabor Son magnitudes el peso y la longitud. a) Forma b) Temperatura c) Altura d) Capacidad

Más detalles

Área de paralelogramos, triángulos y trapecios (páginas 314 318)

Área de paralelogramos, triángulos y trapecios (páginas 314 318) NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de

Más detalles

2) Relaciona las medidas con su unidad más adecuada. La longitud de tu mesa. La longitud de una galleta. Las medidas del patio del colegio

2) Relaciona las medidas con su unidad más adecuada. La longitud de tu mesa. La longitud de una galleta. Las medidas del patio del colegio 1) Observa y completa: 1 kilómetro = 1 km = 1.000 metros = 1.000 m 2 km = m 6 km =. m 9 km =.. m 2) Relaciona las medidas con su unidad más adecuada. La longitud de tu mesa La longitud de una galleta Las

Más detalles

3.- Completa estas igualdades: 12 km = hm 4dm = 40 85 dam = 85000 6,5 = 6500 m 97 m = km 4679 cm = hm

3.- Completa estas igualdades: 12 km = hm 4dm = 40 85 dam = 85000 6,5 = 6500 m 97 m = km 4679 cm = hm 1.-Completa estas tablas: km hm dam m 21 178 4567 m dm cm mm 11 645 239 2.- Expresa en metros cada una de estas longitudes: 7 km = 6000 mm = 850dm = 1,36 hm = 200 cm = 0,9 dam = 3.- Completa estas igualdades:

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. PÁGINA 8 REFLEXIONA La grúa debe cargar en el barco los montones de cajas que hay en el muelle. Para contar el número de cajas que hay en el siguiente

Más detalles

Areas de los cuerpos geometrlcos

Areas de los cuerpos geometrlcos ,,. Areas de los cuerpos geometrlcos PARA EMPEZAR Cómo se calcula el área de un prisma regular Área lateral: Área de la base: Área tata 1: As endo p el perímetro de una de las bases, h la altura del prisma

Más detalles

UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN.

UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN. UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN. Unidad 12: Geometría del espacio (II). Cuerpos de revolución. Al final deberás haber aprendido... Describir cuerpos de revolución e identificar

Más detalles

1. Medidas. 2. Fórmula de Euler. 3. Grueso de una hoja. 4. Medidas corporales. 5. Teorema de Pitágoras. 6. El televisor. 7. Plano de un piso I

1. Medidas. 2. Fórmula de Euler. 3. Grueso de una hoja. 4. Medidas corporales. 5. Teorema de Pitágoras. 6. El televisor. 7. Plano de un piso I 8. Medidas Ámbito científico 1. Medidas 2. Fórmula de Euler 3. Grueso de una hoja 4. Medidas corporales 5. Teorema de Pitágoras 6. El televisor 7. Plano de un piso I 8. Plano de un piso II 9. Tetrabrick

Más detalles

3. Si la capacidad de un cubo es 8 litros, entonces la suma de las medidas de todas las aristas del cubo es

3. Si la capacidad de un cubo es 8 litros, entonces la suma de las medidas de todas las aristas del cubo es Programa Estándar Anual Nº Guía práctica Poliedros Ejercicios PSU 1. Si la arista de un cubo mide 4 cm, entonces el área del cubo mide Matemática A) 12 cm 2 D) 96 cm 2 B) 48 cm 2 E) 576 cm 2 C) 64 cm 2

Más detalles

Índice. Introducción... 4

Índice. Introducción... 4 Índice Introducción... 4 Investigación de medición... 7 Medir rectas en centímetros... 8 Medir hasta el centímetro más cerca... 10 Centímetros y milímetros... 12 Medición de longitud... 16 Medir longitud

Más detalles

UNIDADES DE CAPACIDAD

UNIDADES DE CAPACIDAD 1 UNIDADES DE CAPACIDAD 1. - Completa: - 0,035 kl =... dl - 1247 ml =... dal - 14,56 dal =... cl - 0,52 l =... hl - 6,3 hl =... l - 308 l =... mal - 2,75 hl =... ml - 32 cl =... dal - 0,0007 mal =... dl

Más detalles

Matemáticas Grado 5 Desarrollar fórmulas para área, perímetro y volumen

Matemáticas Grado 5 Desarrollar fórmulas para área, perímetro y volumen Matemáticas Grado 5 Desarrollar fórmulas para área, perímetro y volumen Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a usar patrones para encontrar fórmulas que pueden ser utilizadas

Más detalles

UNIDADES, CAMBIO DE UNIDADES

UNIDADES, CAMBIO DE UNIDADES 1. Ordena de mayor a menor las siguientes longitudes: En primer lugar, para poder ordenarlos hay que poner los en las mismas unidades, siempre vamos a ponerlas en las unidades del SI (Sistema Internacional),

Más detalles

Observa que las figuras no están hechas a medida. Cuando dos lados son iguales se marcan con dos barras paralelas. x + 2m + 7x + 3p 2p

Observa que las figuras no están hechas a medida. Cuando dos lados son iguales se marcan con dos barras paralelas. x + 2m + 7x + 3p 2p Ángulos a) Para cada uno de las siguientes figuras, utiliza las letras que dan las medidas de los ángulos y escribe una ecuación que los relacione, En cada caso, justifica la ecuación con las propiedades

Más detalles

2. Nombra 4 magnitudes fundamentales y 3 magnitudes derivadas.

2. Nombra 4 magnitudes fundamentales y 3 magnitudes derivadas. UD1: LAS MAGNITUDES Y SU MEDIDA MAGNITUDES FUNDAMENTALES Y DERIVADAS 1. Qué es una magnitud? 2. Nombra 4 magnitudes fundamentales y 3 magnitudes derivadas. 3. Completa la frase siguiente: La unidad es

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 179

8Soluciones a los ejercicios y problemas PÁGINA 179 PÁGIN 179 Pág. 1 T eorema de Pitágoras 1 Calcula el área del cuadrado verde en cada uno de los siguientes casos: 14 cm 2 45 m2 60 m 2 30 cm 2 = 44 cm 2 = 15 m 2 2 Cuál es el área de los siguientes cuadrados?:

Más detalles

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la FIGURAS SEMEJANTES Son figuras son semejantes si tienen la misma forma, pero distinto tamaño. Una figura es semejante a otra si has multiplicado a todos y cada uno de los lados de la primera por el mismo

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 11: LONGITUD

MATEMÁTICAS 5. º CURSO UNIDAD 11: LONGITUD MATEMÁTICAS 5. º CURSO UNIDAD 11: LONGITUD OBJETIVOS Identificar el metro como la unidad principal de longitud. Reconocer los múltiplos y submúltiplos más sencillos del metro y sus abreviaturas. Conocer

Más detalles

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que se toma como unidad. El proceso de medida se puede realizar comparando directamente

Más detalles

EJERCICIOS. ÁREAS Y VOLÚMENES.

EJERCICIOS. ÁREAS Y VOLÚMENES. EJERCICIOS. ÁREAS Y VOLÚMENES. Teorema de Tales 1. Sean los triángulos ABC, AB'C'.Calcula el valor desconocido x. 2. Dos triángulos semejantes tienen una superficie de 20cm 2 y 30cm 2 respectivamente.

Más detalles

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman

Más detalles

Grado 5 RESOLUCIÓN DE PROBLEMAS ASOCIADOS AL CÁLCULO DEL PERÍMETRO DE FIGURAS PLANAS. INTRODUCCIÓN. Pruebas de pista

Grado 5 RESOLUCIÓN DE PROBLEMAS ASOCIADOS AL CÁLCULO DEL PERÍMETRO DE FIGURAS PLANAS. INTRODUCCIÓN. Pruebas de pista Grado 5 Clase: Unidad 2 RESOLUCIÓN DE PROBLEMAS ASOCIADOS AL CÁLCULO DEL PERÍMETRO DE FIGURAS PLANAS. Nombre: INTRODUCCIÓN Pruebas de pista En el entrenamiento de reconocimiento de pista de un corredor

Más detalles

CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2. Ejemplo 2

CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2. Ejemplo 2 CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2 ÁREA DE UN CÍRCULO En clase, los estudiantes han hecho exploraciones con círculos y objetos circulares para descubrir la relación entre la circunferencia, diámetro

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.

Más detalles

Hallar el área de estas figuras

Hallar el área de estas figuras Hallar el área de estas figuras El área de la pirámide es la suma de las áreas de un cuadrado y 4 triángulos. El área del prisma es la suma de las áreas las bases ( pentágonos) y 5 rectángulos. Hallar

Más detalles

Lección 13: Unidades de área del sistema métrico decimal

Lección 13: Unidades de área del sistema métrico decimal LECCIÓN 13 Lección 13: Unidades de área del sistema métrico decimal Las unidades de área del Sistema Métrico Decimal se basan en las unidades de longitud del mismo sistema. Por ejemplo, un centímetro cuadrado

Más detalles

SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1.3

SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1.3 Capítulo 11 SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1. En este capítulo, los alumnos analizarán las figuras tridimensionales, que se conocen como sólidos. Revisarán cómo calcular el área de superficie

Más detalles

Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas.

Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. 1.- Escribe el nombre de las siguientes líneas. 2.- Qué ángulos forman dos rectas perpendiculares?

Más detalles

LOS INSTRUMENTOS DE MEDICIÓN

LOS INSTRUMENTOS DE MEDICIÓN LOS INSTRUMENTOS DE MEDICIÓN INTRUMENTO MAGNITUD UNIDAD Cinta métrica Regla Longitud: es la distancia entre dos puntos; por ejemplo, alto, ancho, grosor, largo. Metro (m). Múltiplos, para grandes distancias,

Más detalles

La Densidad, es la masa de un cuerpo por unidad de volumen.

La Densidad, es la masa de un cuerpo por unidad de volumen. Práctica INTRODUCCIÓN.- La Densidad, es la masa de un cuerpo por unidad de volumen. En ocasiones se habla de densidad relativa es significa la relación entre la densidad de un cuerpo y la densidad del

Más detalles

Los números. Refuerzo. 1. Cómo se leen los siguientes números? Escribe con letra. 2. Completa esta tabla.

Los números. Refuerzo. 1. Cómo se leen los siguientes números? Escribe con letra. 2. Completa esta tabla. 1 Los números 1. Cómo se leen los siguientes números? Escribe con letra. 1.458 R 2.351 R 7.072 R 57.469 R 2. Completa esta tabla. número DM UM C D U se descompone 873 0 2 3 4 5 1 7 0 1 3 90.000 + 300 +

Más detalles

La ecuación de segundo grado para resolver problemas.

La ecuación de segundo grado para resolver problemas. La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades

Más detalles

Alianza para el Aprendizaje de Ciencias y Matemáticas. Materia: Ciencia (Química) Nivel: 4 6 Preparado por: Héctor A. Reyes Medina, UPR-Río Piedras

Alianza para el Aprendizaje de Ciencias y Matemáticas. Materia: Ciencia (Química) Nivel: 4 6 Preparado por: Héctor A. Reyes Medina, UPR-Río Piedras Actividad: Vamos a medir un poco. Materia: Ciencia (Química) Nivel: 4 6 Preparado por: Héctor A. Reyes Medina, UPR-Río Piedras Estándares de ciencia La naturaleza de la ciencia Expectativas generales 1.

Más detalles

PRACTICA No.7 DENSIDAD Y USO DEL TERMOMETRO

PRACTICA No.7 DENSIDAD Y USO DEL TERMOMETRO PRACTICA No.7 DENSIDAD Y USO DEL TERMOMETRO INTRODUCCION. El conocimiento de las propiedades físicas puede ser una herramienta útil en la identificación de materiales desconocidos. Ciertas propiedades

Más detalles

MATEMÁTICAS 1º E.S.O.

MATEMÁTICAS 1º E.S.O. MATEMÁTICAS 1º E.S.O. UNIDAD 1. Números naturales Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división

Más detalles

LA MATERIA Y SU MEDIDA. 2º ESO Ciencias de la naturaleza

LA MATERIA Y SU MEDIDA. 2º ESO Ciencias de la naturaleza LA MATERIA Y SU MEDIDA 2º ESO Ciencias de la naturaleza LA MATERIA Materia es todo aquello que tiene volumen (ocupa un espacio) y masa. PROPIEDADES DE LA MATERIA Las propiedades son las características

Más detalles

Hoja de problemas. nº 2 2003, 2011, 2017,

Hoja de problemas. nº 2 2003, 2011, 2017, Hoja de problemas nº 2 2, 3, 5, 7, 11, 13,11, 2003, 2011, 2017, Hojas de Problemas La Divisibilidad Hoja nº 2 Divisibilidad A. Ariza/A. Sánchez/R. Trigueros 1. Calcular todos los divisores de 60. 2. Calcular

Más detalles

REPASO. Nombre: Fecha: Curso: ^ A ^ C. Los ángulos consecutivos comparten un lado y el vértice. Los ángulos opuestos por el vértice suman 90.

REPASO. Nombre: Fecha: Curso: ^ A ^ C. Los ángulos consecutivos comparten un lado y el vértice. Los ángulos opuestos por el vértice suman 90. REPASO 1 Mide los siguientes ángulos con un transportador e indica de qué tipo son. ^ A ^B ^ C ^ D ^E 2 Indica si las siguientes afirmaciones son verdaderas o falsas. Justifica tu respuesta. Los ángulos

Más detalles

Si ningún alumno hace algún comentario, el profesor pregunta si están mirando los lados del octágono.

Si ningún alumno hace algún comentario, el profesor pregunta si están mirando los lados del octágono. 65 7) Prisma octagonal. Al iniciar la clase, el profesor coloca las ligas del geospacio, ante todos los alumnos, o solicita que algunos de ellos lo hagan, mientras él los dirige. Ya formado el prisma octagonal,

Más detalles

UNIDAD 3: PROPIEDADES DE LA MATERIA

UNIDAD 3: PROPIEDADES DE LA MATERIA UNIDAD 3: PROPIEDADES DE LA MATERIA Lee atentamente: 1. LA MATERIA: SUS PROPIEDADES Todas las cosas que nos rodean están formadas por sustancias: los objetos, los árboles, etc. Las sustancias se diferencian

Más detalles

TEMA 5. NÚMEROS DECIMALES Y SISTEMA MÉTRICIO DECIMAL

TEMA 5. NÚMEROS DECIMALES Y SISTEMA MÉTRICIO DECIMAL TEMA 5. NÚMEROS DECIMALES Y SISTEMA MÉTRICIO DECIMAL 1. Escribe con cifras los siguientes números: a) Cuarenta y cinco unidades y tres décimas. b) Diez unidades veinticuatro centésimas. c) Trescientas

Más detalles

NOMBRE: FICHA 1 CAMBIOS DE UNIDADES

NOMBRE: FICHA 1 CAMBIOS DE UNIDADES NOMBRE: FICHA 1 CAMBIOS DE UNIDADES - MAGNITUD es todo aquello que se puede medir. Por ejemplo, se puede medir la masa, la longitud, el tiempo, la velocidad, la fuerza... La belleza, el odio... no son

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA

SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA SOLUCIONES MINIMOS º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA Ejercicio nº 1.- Los lados de un triángulo miden, respectivamente, 9 cm, 1 cm y 15 cm. Averigua si el triángulo es rectángulo. Según el teorema

Más detalles

2 POTENCIAS Y RAÍCES CUADRADAS

2 POTENCIAS Y RAÍCES CUADRADAS 2 POTENCIAS Y RAÍCES CUADRADAS EJERCICIOS PROPUESTOS 2.1 Escribe cada potencia como producto y calcula su valor. a) ( 7) 3 b) 4 5 c) ( 8) 3 d) ( 3) 4 a) ( 7) 3 ( 7) ( 7) ( 7) 343 c) ( 8) 3 ( 8) ( 8) (

Más detalles

I C I L I N D R O. Atotal = 2πr(h + r), donde h es la altura del cilindro y r es radio de la base.

I C I L I N D R O. Atotal = 2πr(h + r), donde h es la altura del cilindro y r es radio de la base. Generatriz: g 2 = r 2 + h 2 Ejemplo: Si r = 5 cm y h = 12 cm, 2 2 2 LICEO TECNICO CLELIA CLAVEL DINATOR SECTOR: MATEMÁTICA DOCENTE: SIXTA POSTIGOMORENO NIVEL: CUARTO MEDIO GUÍA DE UNIDAD Nº : AREAS Y VOLÚMENES

Más detalles

UNIDAD IV ÁREAS DE FIGURAS PLANAS

UNIDAD IV ÁREAS DE FIGURAS PLANAS UNIDAD IV ÁREAS DE FIGURAS PLANAS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica las áreas de figuras planas, volumen y superficie. CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro

Más detalles

Matemáticas. 2º DE EDUCACIÓN SECUNDARIA OBLIGATORIA Mayo 2011

Matemáticas. 2º DE EDUCACIÓN SECUNDARIA OBLIGATORIA Mayo 2011 Matemáticas 2º DE EDUCACIÓN SECUNDARIA OBLIGATORIA Mayo 2011 INSTRUCCIONES En las páginas siguientes de este cuadernillo encontrarás una serie de preguntas relacionadas con el área de matemáticas. No se

Más detalles

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del tercer examen de recuperación de MATEMÁTICAS DE º ESO PENDIENTES º ESO Tercer examen DEPARTAMENTO DE MATEMÁTICAS 1.- En un triángulo rectángulo, los catetos miden 5 y 1cm, respectivamente.

Más detalles

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es. Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,

Más detalles

CUESTIONARIO 4 GRADO III BIMESTRE CIENCIAS NATURALES DOCENTE: YULIS FONTALVO MEJÍA COLEGIO ROSARIO DE SANTO DOMINGO

CUESTIONARIO 4 GRADO III BIMESTRE CIENCIAS NATURALES DOCENTE: YULIS FONTALVO MEJÍA COLEGIO ROSARIO DE SANTO DOMINGO CUESTIONARIO 4 GRADO III BIMESTRE CIENCIAS NATURALES DOCENTE: YULIS FONTALVO MEJÍA COLEGIO ROSARIO DE SANTO DOMINGO 1. La materia es aquello que constituye los objetos y ocupa un lugar en el espacio, las

Más detalles

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR Adaptación del Experimento Nº1 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 36-42. Autorizado por el Autor. Materiales: Cilindros

Más detalles

Volumen de los cuerpos geométricos

Volumen de los cuerpos geométricos Volumen de los cuerpos geométricos Contenidos 1. Volumen y capacidad Unidades de volumen Capacidad y volumen 2. Volumen de un prisma Cubo Ortoedro Resto de prismas 3. Volumen de una pirámide Relación entre

Más detalles

Área de paralelogramos (páginas 546 549)

Área de paralelogramos (páginas 546 549) A NOMRE FECHA PERÍODO Área de paralelogramos (páginas 546 549) Un paralelogramo es un cuadrilátero con dos pares de lados paralelos. La base es cualquiera de los lados y la altura es la distancia más corta

Más detalles

Guía del docente. 1. Descripción curricular:

Guía del docente. 1. Descripción curricular: Guía del docente. 1. Descripción curricular: - Nivel: NB6º, 8º Básico. - Subsector: Matemática. - Unidad temática: Geometría. - Palabras claves: Geometría; Volumen; Figuras geométricas; - Contenidos curriculares:

Más detalles

Actividades de refuerzo

Actividades de refuerzo MATEMÁTICAS 1º SECUNDARIA CUADERNO DE ACTIVIDADES DE REFUERZO Nombre: Curso: Fecha de entrega: 1 Números naturales. Divisibilidad 1. Rodea con una circunferencia los múltiplos de 4, y con un cuadrado los

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 241 EJERCICIOS Clasificación. Propiedades 1 Observa el siguiente diagrama: cuadriláteros 4 rectángulos trapecios rombos 2 1 3 5 paralelogramos 6 Qué figura geométrica corresponde al recinto?

Más detalles

UNIDAD 1: EL MUNDO MATERIAL

UNIDAD 1: EL MUNDO MATERIAL CIENCIAS DE LA NATURALEZA 2º ESO Alumno/a: grupo: UNIDAD 1: EL MUNDO MATERIAL Lee atentamente y copia: 1. A QUÉ SE LLAMA MATERIA? Si miras a tu alrededor, te dará cuenta de que todos los objetos que podemos

Más detalles

Tema 1: Introducción. Primeros conceptos.

Tema 1: Introducción. Primeros conceptos. Tema 1: Introducción. Primeros conceptos. El papel de la geometría en las matemáticas de primaria: cuál es? cuál debería ser? En la puerta de la Academia de Platón se podía leer Que no entre aquí nadie

Más detalles

TRIANGULOS. La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos.

TRIANGULOS. La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos. TRIANGULOS La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos. CLASIFICACION DE LOS TRIANGULOS Los triángulos se pueden clasificar por la relación entre las

Más detalles

LABORATORIO 1. TITULO: Reconocimiento del material de laboratorio y medición de Volúmenes.

LABORATORIO 1. TITULO: Reconocimiento del material de laboratorio y medición de Volúmenes. 15 LABORATORIO 1 TITULO: Reconocimiento del material de laboratorio y medición de Volúmenes. OBJETIVOS : Familiarizar al estudiante con los implementos usados en el Laboratorio de Química. Capacitar al

Más detalles

2) Halla el cociente y el resto de la división 438:5.Haz La prueba. 3) Halla el cociente y el resto de la división 7612: 23. Haz la prueba.

2) Halla el cociente y el resto de la división 438:5.Haz La prueba. 3) Halla el cociente y el resto de la división 7612: 23. Haz la prueba. 1 CUADERNO DE EJERCICIOS PARA 1º DE ESO.VERANO 010 I.E.S. AL-BAYTAR. DEPARTAMENTO DE MATEMÁTICAS NÚMEROS NATURALES 1) Aplica la propiedad distributiva.(15+7) ) Halla el cociente y el resto de la división

Más detalles

Semejanza. Teorema de Pitágoras

Semejanza. Teorema de Pitágoras Semejanza. Teorema de Pitágoras Contenidos 1. Teorema de Tales Enunciado y posición de Tales Aplicaciones 2. Semejanza de figuras Figuras semejantes Semejanza de triángulos Aplicaciones Relación entre

Más detalles

Secuencia de Mediciones

Secuencia de Mediciones Secuencia de Mediciones Por Insp. Nancy Zunino Educación Inicial Tacuarembó Marco conceptual Muchos de los problemas que enfrentamos cotidianamente requiere del uso de conocimientos matemáticos relacionados

Más detalles

1. MEDIDA Y MÉTODO CIENTÍFICO

1. MEDIDA Y MÉTODO CIENTÍFICO 1. MEDIDA Y MÉTODO CIENTÍFICO 1. En 1896, el físico francés Henri Becquerel dejó, por accidente una placa fotográfica virgen en un cajón que contenía sales de uranio y observó, posteriormente, que la placa

Más detalles

MEDIDA DE MAGNITUDES. EL SISTEMA MÉTRICO DECIMAL

MEDIDA DE MAGNITUDES. EL SISTEMA MÉTRICO DECIMAL MEDIDA DE MAGNITUDES. EL SISTEMA MÉTRICO DECIMAL MAGNITUDES Y UNIDADES Las cualidades de un objeto que se pueden medir se llaman magnitudes. Las magnitudes se expresan con una unidad de medida. Algunas

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

6Soluciones a las actividades de cada epígrafe PÁGINA114

6Soluciones a las actividades de cada epígrafe PÁGINA114 PÁGINA114 Pág. 1 La utilización de sistemas de medida diferentes dificulta la comunicación, el comercio, el desarrollo científico, etc. Por eso se propuso, ya a finales del siglo XVIII, la adopción de

Más detalles

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos?

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? Geometría en 3D. Problemas del capítulo 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? 2. Qué es volumen y cómo lo encontramos? 3. Cómo se relacionan los volúmenes

Más detalles

EVALUACIÓN Módulo 3 Matemática. Sexto año básico

EVALUACIÓN Módulo 3 Matemática. Sexto año básico EVLUIÓN Módulo 3 Matemática Sexto año básico Mi nombre Mi curso Nombre de mi escuela Fecha 2013 Instrucciones: Lee con atención el enunciado de las preguntas y haz un círculo a la letra con la respuesta

Más detalles

Unidades de medida de: longitud, volumen, masa y tiempo

Unidades de medida de: longitud, volumen, masa y tiempo Unidades de medida de: longitud, volumen, masa y tiempo 1- Introducción Medir es comparar una magnitud con otra que llamamos unidad. La medida es el número de veces que la magnitud contiene a la unidad

Más detalles

UNIDAD 10 CUERPOS GEOMÉTRICOS

UNIDAD 10 CUERPOS GEOMÉTRICOS UNIDAD 10 CUERPOS GEOMÉTRICOS EJERCICIOS RESUELTOS Objetivo General. Al terminar ésta unidad identificarás los diferentes tipos de Cuerpos Geométricos, resolverás ejercicios y problemas en los que apliques

Más detalles

MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES. Actividad 1 Algunas unidades de longitud

MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES. Actividad 1 Algunas unidades de longitud MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES Actividad 1 Algunas unidades de longitud Las principales unidades de longitud que se utilizan en la práctica se basan en el metro. Del metro se derivan

Más detalles

Sentido numérico y pensamiento algebraico. Problemas multiplicativos

Sentido numérico y pensamiento algebraico. Problemas multiplicativos Bloque 3 Aprendizajes esperados Resuelve problemas que implican efectuar multiplicaciones o divisiones con expresiones algebraicas Justifica la suma de los ángulos internos de cualquier triángulo o polígono

Más detalles

TRANSFORMACIONES DEL PLANO

TRANSFORMACIONES DEL PLANO PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál

Más detalles

Nombre del estudiante: Grupo: Fecha:

Nombre del estudiante: Grupo: Fecha: GUÍA PARA CUARTO EXAMEN BIMESTRAL DE MATEMÁTICAS 1 Página 1 de 8 Nombre del docente: Eva Castillo Baños SECCIÓN SECUNDARIA CLAVE 15PES0413X CICLO ESCOLAR 2015-2016 Nombre del estudiante: Grupo: Fecha:

Más detalles

5. Cómo calcular la dosis

5. Cómo calcular la dosis 5. Cómo calcular la dosis Para que un medicamento actúe de manera eficaz sobre el organismo, es necesario administrarlo en cantidad suficiente. Por otro lado, una cantidad excesiva puede producir efectos

Más detalles

Problemas de semejanza

Problemas de semejanza . Dibuja un segmento de 8 cm de longitud y divídelo en 7 partes iguales. 2. Los lados de un rectángulo miden 4 cm y 6 cm. Cuánto medirán los lados de un segundo rectángulo semejante al anterior si la razón

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

4 EXPRESIONES ALGEBRAICAS

4 EXPRESIONES ALGEBRAICAS 4 EXPRESIONES ALGEBRAICAS EJERCICIOS PROPUESTOS 4.1 4. 4.3 4.4 4.5 4.6 Indicamos con la letra l el lado de un heágono regular. a) Cómo epresarías su perímetro? b) Cuál es el valor del perímetro si el lado

Más detalles